Python站
  • 说明
  • 源码分析
  • 100 系列
  • python
    • 开发基础
      • 数据类型
      • 字符编码
      • 文本操作
      • 玩转Python100解
    • 函数编程
      • 装饰器
      • 内置函数
        • vars
      • 内置模块
        • enum
        • os
        • argparse
        • importlib
        • shelve
        • collections
        • re
      • 神奇三方
        • setuptools
        • celery
    • 面向对象
      • 面向对象100解(草稿)
    • 网络编程
      • 网络理论知识
      • 网络编程socket
      • socketserver源码泛读
    • 并发编程
      • 并发编程之多进程
        • 子进程基本使用
        • 进程的属性或方法
        • 守护进程
        • 互斥锁
        • 队列
        • 生产者消费者模型
      • 并发编程之多线程
        • 子线程基本使用
        • GIL全局解释器锁
        • 死锁现象与递归锁
        • 信号量事件定时器
        • 线程队列queue
      • 并发编程之进程线程池
      • 并发编程之协程
      • 并发编程之IO模型
        • 阻塞IO
        • 非阻塞IO
        • 多路复用IO
        • 异步IO
        • IO模型比较分析
    • 数据库说
      • mongoengine源码精读
    • 前端开发
    • 后端开发
      • flask源码精读
      • django源码精读
        • 01 软件打包与部署
        • 02 python调试工具 pdb
        • 03 创建一个django项目
    • 爬虫相关
      • Jupyter Notebook
      • urllib
      • urllib3源码泛读
      • 数据解析
      • requests源码精读
        • 初始化说 __init__.py
        • 版本信息 __version__.py
        • 版本兼容 compat.py
        • 经典视图 api.py
        • 逻辑实现 sessions.py
        • 数据存储 models.py
        • 网络传输 adapters.py
        • 异常结构 exceptions.py
        • 交互协定 status_code.py
        • 钩子编程 hooks.py
        • 数据结构 structures.py
        • 辅助输出 utils.py
        • 安全认证 auth&certs.py
    • 编程思想
      • 算法
      • 数据结构
      • 设计模式
        • 简单工厂模式
        • 工厂方法模式
        • 抽象工厂模式
        • 建造者模式
        • 单例模式
        • 适配器模式
        • 桥模式
        • 组合模式
        • 外观模式
        • 代理模式
        • 责任链模式
        • 观察者模式
        • 策略模式
        • 模板方法模式
      • Python技巧100解
      • Effective Python
    • 企业应用
      • DevOps
      • Web服务-Nginx
      • 网站发布
      • 源码管理
        • Git
        • GitHub
        • GitLab
      • Golang
      • Docker
      • Ubuntu
    • 项目实战
    • 就业相关
    • 其他爱好
      • 科技单词100解答
Powered by GitBook
On this page
  1. python
  2. 并发编程
  3. 并发编程之IO模型

多路复用IO

Multiplexing IO

Previous非阻塞IONext异步IO

Last updated 5 years ago

IO Multiplexing,可说select/epoll,又或者事件驱动IO(event driven IO)。select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO

基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,
当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。  
这个图和blocking IO的图其实并没有太大的不同,事实上还更差一些。因为这里需要使用两个系统调用\(select和recvfrom\),
而blocking IO只调用了一个系统调用\(recvfrom\)。但是,用select的优势在于它可以同时处理多个connection。

强调:

1. 如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。

2. 在多路复用模型中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

结论: select的优势在于可以处理多个连接,不适用于单个连接

select网络IO模型示例

# client.py
from socket import *
client = socket(AF_INET, SOCK_STREAM)
client.connect(('127.0.0.1', 8081))

while True:
    msg = input('msg>: ').strip()
    if not msg:
        continue
    client.send(msg.encode('utf-8'))
    data = client.recv(1024)
    print(data.decode('utf-8'))
    
# server.py
from socket import *
import select

server = socket(AF_INET, SOCK_STREAM)
server.bind(('127.0.0.1', 8081))
server.listen(5)
server.setblocking(False)
print('start...')

rlist = [server, ]
wlist = []
wdata = {}

while True:
    rl, wl, xl = select.select(rlist, wlist, [], 0.5)
    for sock in rl:
        if sock == server:
            conn, address = sock.accept()
            rlist.append(conn)
        else:
            try:
                data = sock.recv(1024)
                if not data:
                    sock.close()
                    rlist.remove(sock)
                    continue
                wlist.append(sock)
                wdata[sock] = data.upper()
            except Exception:
                sock.close()
                rlist.remove(sock)
    for sock in wl:
        sock.send(wdata[sock])
        wlist.remove(sock)
        wdata.pop(sock)

select监听fd变化的过程分析:

用户进程创建socket对象,拷贝监听的fd到内核空间,每一个fd会对应一张系统文件表,内核空间的fd响应到数据后,
就会发送信号给用户进程数据已到;
用户进程再发送系统调用,比如(accept)将内核空间的数据copy到用户空间,同时作为接受数据端内核空间的数据清除,
这样重新监听时fd再有新的数据又可以响应到了(发送端因为基于TCP协议所以需要收到应答后才会清除)。

该模型的优点:

相比其他模型,使用select() 的事件驱动模型只用单线程(进程)执行,占用资源少,不消耗太多 CPU,同时能够为多客户端提供服务。
如果试图建立一个简单的事件驱动的服务器程序,这个模型有一定的参考价值。

该模型的缺点:

首先select()接口并不是实现“事件驱动”的最好选择。因为当需要探测的句柄值较大时,select()接口本身需要消耗大量时间去轮询各个句柄。
很多操作系统提供了更为高效的接口,如linux提供了epoll,BSD提供了kqueue,Solaris提供了/dev/poll,…。
如果需要实现更高效的服务器程序,类似epoll这样的接口更被推荐。遗憾的是不同的操作系统特供的epoll接口有很大差异,
所以使用类似于epoll的接口实现具有较好跨平台能力的服务器会比较困难。
其次,该模型将事件探测和事件响应夹杂在一起,一旦事件响应的执行体庞大,则对整个模型是灾难性的。